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Contextual linear bandits
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Meta learning  

Dataset:

New user :

few labels

Movies recommender system
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Meta learning  using representation learning
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Learn the unknown low-dimensional representation B shared across all tasks.

Low rank assumption:

Learn the task-specific vector for the new task (using, for example, simple linear regression in our case).
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Meta learning  using representation learning

First step, n = 1 : Select a random action and observe the feedback.

For n=2 to N do :

After estimating B, the new task can be learned through the following algorithm:

-

-

- Observe feedback

Greedy policy algorithm :
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Estimating B

First Method: 
Trace norm regularization [L.Cella, K.Lounici, G.Pacreau  and M.Pontil,  ICML’23]

 
We convexify this problem by using the trace norm:

We have a regression problem under the assumption of a low-rank matrix. The problem is defined as follows:

Use SVD of Ŵ to get B.

regression regularization
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Trace norm regularization

Computing the sub-gradient of the trace norm, making proximal algorithms computationally
expensive. We use an algorithm based on the fact that:

to optimize the following problem:

by linearizing the function f using its quadratic approximation.

Numerical simulation 

[S.Ji and J.Ye, ICML’09]
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Trace norm regularization

Regression matrix error

The estimation error on W is given by 

Theorem 1:

Optimality condition + assumption on the distribution
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Estimating B

Second Method: 
Method of moments [N.Tripuraneni, C.Jin, and M.Jordan, ICML’21]

We calculate the moment of order 2 : 

We can retrieve the space spanned by the columns of B by applying PCA on Σ with dimension r, the rank of B.
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Estimating B

Why does it work ? 

This works because the space spanned by the r-th first eigenvectors of Γ is equal to the space spanned by the columns
of B
We must know r

We showed that rg(Γ) = rg(B)

Contribution :

Why not try to estimate r by estimating the rank of Γ ?
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Method of moments

Error on Σ : 

The estimation error on Σ is given by 

Theorem 2:
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Method of moments

Proof sketch : Epsilon-Net

Recouvrement d’un ensemble par
des boules de taille ε

Norme d’opérateur d’une matrice
symétrique avec un ε-Net N de la

sphère unité

Il existe un recouvrement de la
sphère unité par un ε-Net de taille

finie
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Method of moments

Proof sketch : 

Eta-conditioning
Hanson-Wright

Eta-conditioning
Projection on w
Hanson-Wright

Bernstein
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Error on the estimation of B

Both methods 1 and 2 rely on estimating a matrix and subsequently using it to estimate its singular vectors.

But what guarantees the “convergence” of the singular vectors ? 

Without loss of generality, using the symmetrization trick, we examine the "convergence" of the eigenspaces.
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Error on the estimation of B

Use the notion of the resolvent of a matrix to derive an analytical expression for the projection matrix of the
eigenspaces.

The two matrices need to be close relative to a notion of “spectral gap”.

Theorem 3:
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Simulation 

Synthetic data : 

Sub linear regret of order of 

Importance of tuning λ

I.i.d., gaussian random variables.
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Movie lens

Dataset description

Movies lens contains  100000 ratings by 943 users on 1682 movies.
Each user has rated at least 20 movies. we have movie_id , rating_date, release_date, genre, age,
gender,  occupation.

Ideal x : 
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Simulation 

Movie lens data : 

Theory predicts sublinear
regret.
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