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Notations. - Singular Values : σmax(A) = σ1(A) ≥ . . . ≥ σn(A) ≥ 0.
A real symetric - Eigenvalues : λmax(A) = λ1(A) ≥ . . . ≥ λn(A).

1 Introduction and motivation

Covariance matrix estimation is a fundamental problem in statistics and machine learning, with
applications ranging from financial risk modeling to genetic data analysis. In high-dimensional
settings where the number of features d is comparable to the sample size n, classical asymptotic
results (where d is fixed) become unreliable. Random Matrix Theory (RMT) provides powerful
tools to analyze covariance estimators in such regimes.
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2 Classical Approach

2.1 Operator Norm and ϵ-Nets

The operator norm ∥A∥ = sup∥x∥2=1 ∥Ax∥2 is critical for analyzing covariance estimators. For
symmetric matrices, it relates to quadratic forms:

Lemma 1. If A ∈ Rd×d is a symmetric matrix, then

∥A∥ = max
∥x∥2=1

|⟨Ax, x⟩|.

To control ∥A∥, we discretize the unit sphere using ϵ-nets:

Definition 1 (ϵ-net). Let (X, d) be a metric space. Let K ⊂ X and ϵ > 0. A set N ⊂ K is an
ϵ-net on K if and only if

K ⊂
⋃
x∈N

B(x, ϵ).

Proposition 1. Let A ∈ Rd×d be a symmetric matrix, and let ϵ ∈
[
0, 12
)
. For any ϵ-net N of

the unit sphere Sd−1, we have

∥A∥ ≤ 1

1− 2ϵ
sup
x∈N

|⟨Ax, x⟩| .

Proof. According to Lemma 1, there exists x ∈ Sd−1 such that |⟨Ax, x⟩| = ∥Ax∥, and by the
definition, there exists x0 ∈ N such that ∥x− x0∥2 ≤ ϵ.

By the triangle inequality, we get:

∥A∥ − |⟨Ax0, x0⟩| = |⟨Ax, x⟩| − |⟨Ax0, x0⟩|
≤ |⟨Ax, x⟩ − ⟨Ax0, x0⟩|
= |⟨Ax, x− x0⟩+ ⟨A(x− x0), x0⟩|
≤ |⟨Ax, x− x0⟩|+ |⟨A(x− x0), x0⟩| .

Using the Cauchy-Schwarz inequality, we get:

∥A∥ − |⟨Ax0, x0⟩| ≤ ∥A∥2∥x− x0∥2 + ∥A(x− x0)∥2∥x0∥2
≤ 2ϵ∥A∥.

Thus:

∥A∥ ≤ 1

1− 2ϵ
|⟨Ax0, x0⟩|

≤ 1

1− 2ϵ
sup
x∈N

|⟨Ax, x⟩| .

Proposition 2. For every ϵ > 0, we can find an ϵ-net N on Sd−1 such that its cardinality
satisfies

|N | ≤ 9d.
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2.2 Concentration

The Hanson-Wright inequality provides tail bounds for quadratic forms of sub-Gaussian vectors:

Proposition 3 (Hanson-Wright Inequality). Let Z = (Z1, . . . , Zm) ∈ Rm be a random vector
with independent sub-Gaussian components Zi that satisfy E[Zi] = 0 and ∥Zi∥2ψ2

≤ K. Let A be
an m×m matrix. Then, for all t ≥ 0,

P
(
|Z⊤AZ − E[Z⊤AZ]| > t

)
≤ 2 exp

(
−cmin

(
t2

K4∥A∥2F
,

t

K2∥A∥

))
.

This inequality can be rewritten as,

P

(
|Z⊤AZ − E[Z⊤AZ]| > K2max(

∥A∥t
c

, ∥A∥F

√
t

c
)

)
≤ 2 exp(−t)

or alternatively by introducing C = 1
min(c,

√
c)

P
(
|Z⊤AZ − E[Z⊤AZ]| > CK2max(∥A∥t, ∥A∥F

√
t)
)
≤ 2 exp(−t)

2.3 Sample Covariance Concentration

Applying these tools, we derive non-asymptotic bounds for the sample covariance matrix :

Theorem 1 (Operator Norm Bound). For Gaussian Xi ∼ N (0,Σ), with probability 1−2·9de−nt,

∥Σ̂− Σ∥ ≤ C∥Σ∥max
(√

t, t
)
.

Proof. Let X1, . . . , Xn ∈ Rd be realizations of a centered Gaussian vector X with covariance
matrix Σ = E(XXT ). Define

Σn =
1

n

n∑
i=1

XiX
T
i .

1) Approximation using an ϵ-net: We take ϵ = 1
4 . By Proposition 2, consider an ϵ-net N

of the unit sphere Sd−1 with cardinality at most 9d.

Since Σn − Σ is a symmetric matrix, by Proposition 1, we have

∥Σn − Σ∥ ≤ 2 sup
u∈N

|⟨(Σn − Σ)u, u⟩|

which expands to

2 sup
u∈N

∣∣∣∣∣ 1n
n∑
i=1

⟨XiX
T
i u, u⟩ − E

[
⟨XXTu, u⟩

]∣∣∣∣∣ .
Let

gn(u) =
1

n

n∑
i=1

⟨XiX
T
i u, u⟩ − E

[
⟨XXTu, u⟩

]
.

By rearranging inner products, we obtain

gn(u) =
1

n

n∑
i=1

(
⟨Xi, u⟩2 − E

(
⟨X,u⟩2

))
.
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Now, setting Xi = Σ
1
2Zi, where Zi is a standardized Gaussian vector, we substitute Xi to

get

gn(u) =
1

n

n∑
i=1

(
⟨Zi,Σ

1
2u⟩2 − E

(
⟨Zi,Σ

1
2u⟩2

))
.

Writing this in matrix form:

gn(u) =
1

n

n∑
i=1

(
ZTi Σ

1
2u(Σ

1
2u)TZi − E

(
ZTi Σ

1
2u(Σ

1
2u)TZi

))
.

Defining Z = (ZT1 , . . . , Z
T
n )

T and A(u) as the block diagonal matrix of size nd × nd with
n blocks Σ

1
2u(Σ

1
2u)T , we obtain

gn(u) =
1

n

(
ZTA(u)Z − E(ZTA(u)Z)

)
.

2) Concentration inequality: Let t > 0 and u ∈ Sd−1. Using the Hanson-Wright inequality
(Proposition 3) for nt > 0,

P
(
|Z⊤A(u)Z − E[Z⊤A(u)Z]| > CK2max(∥A(u)∥nt, ∥A(u)∥F

√
nt)
)
≤ 2 exp(−nt).

Since A(u) is symmetric,

∥A(u)∥ = max{|λ1(A(u))|, |λnd(A(u))|} = max{|λ1(Σ
1
2u(Σ

1
2u)T )|, |λd(Σ

1
2u(Σ

1
2u)T )|}.

Thus,
∥A(u)∥ = ∥Σ

1
2u(Σ

1
2u)T ∥ ≤ ∥Σ∥∥u∥2,

and
∥A(u)∥2F = n∥Σ

1
2u(Σ

1
2u)T ∥2F ≤ n(∥Σ∥∥u∥2)2.

Bounding the left-hand side, the inequality simplifies to

P
(
|gn(u)| > ∥Σ∥CK2max(t,

√
t)
)
≤ 2 exp(−nt).

3) Union bound: Finally, we conclude by bounding the operator norm. For any t > 0,

P
(
∥Σn − Σ∥ > 2∥Σ∥CK2max(t,

√
t)
)
≤ 2× 9d exp(−nt).

Remark 1. For the sample covariance matrix to be a consistent estimator, n must grow at least
linearly with d. However, if both n and d tend to infinity at the same rate, the convergence of
the sample covariance matrix is no longer guaranteed.

This also gives as a bound on the estimation of the eigenvalues through Weyl’s Inequalites :

Proposition 4 (Weyl’s Inequality). For two symmetric matrices A,B in Rd×d, we have the
following result regarding eigenvalues:

∀i ∈ {1, . . . , d}, |λi(A)− λi(B)| ≤ ∥A−B∥.
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3 Non-Asymptotic Eigenvalue Analysis

3.1 Singular Values of Gaussian Matrices

3.1.1 Preliminaries

We have the following results for Gaussian processes

Lemma 2 (Lipschitz functions Gaussian concentration inequality). Let (xi) ∼ N (0, 1) i.i.d.
and f : Rn −→ R, we suppose that f is L-Lipschitz in ∥.∥2. Then

∀t ≥ 0,P(|f(X1, . . . , Xn)− E(f(X1, . . . , Xn))| ≥ t) ≤ 2exp(− t2

2L2
)

Lemma 3 (Sudakov-Fernique). Given (X1, . . . , Xn) and (Y1, . . . , Yn) two zero-mean n-dimensional
Gaussian vectors, suppose that

E[(Xi −Xj)
2] ≤ E[(Yi − yj)

2], ∀i, j ∈ [n]

Then
E(maxi=1,...,nXi) ≤ E(maxi=1,...,nYi)

3.1.2 Result

We had (xi) ∼ N (0,Σ) i.i.d. , where Σ ∈ Rd×d is a positive definite matrix. We have

X =

x
T
1
...
xTn

 ∈ Rn×d, Σ̂ =
1

n
XTX.

Theorem 2. for all δ > 0, we have :

1) P(
σmax(X)√

n
≥ λmax(

√
Σ)(1 + δ) +

√
tr(Σ)

n
) ≤ e−nδ

2/2

2) if n ≥ d ,P(
σmin(X)√

n
≤ λmin(

√
Σ)(1 + δ)−

√
tr(Σ)

n
) ≤ e−nδ

2/2

Proof. Notation: σ̄max = γmax(
√
Σ)

- Step 1 : Concentration
By standard properties of the multivariate Gaussian distribution, we can write

X = W
√
Σ,

where the random matrix W ∈ Rn×d has i.i.d. N (0, 1) entries.
Using Weyl’s theorem, given another matrix W′ ∈ Rn×d, we have:∣∣∣σmax(W

√
Σ)− σmax(W

′√Σ)
∣∣∣ ≤ ∥(W −W′)

√
Σ∥2 ≤ ∥W −W′∥2λmax(

√
Σ).

So, the mapping

W 7→ σmax(W
√
Σ)√

n

viewed as a real-valued function on Rnd, is Lipschitz with respect to the Euclidean norm with
constant at most L = σ̄max/

√
n.
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Using Lemma 2, the function satisfies a Gaussian concentration inequality

P
[
σmax(X) ≥ E[σmax(X)] +

√
nσ̄maxδ

]
≤ e−nδ

2/2.

Consequently, it suffices to show that

E[σmax(X)] ≤
√
nσ̄max +

√
tr(Σ)

- Step 2 : Bounding the expected value
We first use a variational formulation of σmax

σmax(X) = max
v∈Sd−1(Σ−1)

∥Wv∥2 = max
u∈Sn−1

max
v∈Sd−1(Σ−1)

uTWv︸ ︷︷ ︸
Zu,v

,

where
Sd−1(Σ−1) :=

{
v ∈ Rd | ∥Σ−1/2v∥2 = 1

}
.

Thus, it suffices to bound the expectation of the zero-mean Gaussian process {Zu,v, (u, v) ∈
T} indexed by the set T := Sn−1 × Sd−1(Σ−1).

We want to apply the Sudakov-Fernique Lemma, but first, we need to find another Gaussian
process {Yu,v, (u, v) ∈ T} such that

E[(Zu,v − Zũ,ṽ)
2] ≤ E[(Yu,v − Yũ,ṽ)

2], ∀(u, v), (ũ, ṽ) ∈ T.

Applying the Sudakov-Fernique Lemma, we’ll obtain:

E[σmax(X)] = E
[
max

(u,v)∈T
Zu,v

]
≤ E

[
max

(u,v)∈T
Yu,v

]
.

Given two pairs (u, v) and (ũ, ṽ), assume ∥v∥2 ≤ ∥ṽ∥2 (otherwise reverse their roles). Then,

E[(Zu,v − Zũ,ṽ)
2] = E[(⟨W, uvT − ũṽT ⟩)2] = ∥uvT − ũṽT ∥2F .

the last equality is because W has i.i.d. N(0, 1) entries
Expanding the Frobenius norm:

∥uvT − ũṽT ∥2F = ∥u(v − ṽ)T + (u− ũ)ṽT ∥2F
= ∥(u− ũ)ṽT ∥2F + ∥u(v − ṽ)T ∥2F + 2⟨u(v − ṽ)T , (u− ũ)ṽT ⟩
≤ ∥ṽ∥22∥u− ũ∥22 + ∥u∥22∥v − ṽ∥22 + 2(∥u∥22 − ⟨u, ũ⟩)(⟨v, ṽ⟩ − ∥ṽ∥22).

Using ∥v∥2 ≤ ∥ṽ∥2, we obtain:

⟨v, ṽ⟩ ≤ ∥v∥2∥ṽ∥2 ≤ ∥ṽ∥22.

So since ∥u∥22 = ∥ũ∥22(= 1),(
∥ũ∥22 − ⟨u, ũ⟩

) (
⟨v, ṽ⟩ − ∥ṽ∥22

)
≤ 0,

which simplifies to:

∥uvT − ũṽT ∥2F ≤ ∥ṽ∥22∥u− ũ∥22 + ∥ṽ − v∥22.

By definition of Sd−1(Σ−1), we have ∥ṽ∥2 ≤ σ̄max = γmax(
√
Σ), leading to:

E[(Zu,v − Zũ,ṽ)
2] ≤ σ2

max∥u− ũ∥22 + ∥ṽ − v∥22.

Motivated by this inequality, we define the Gaussian process
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Yu,v := σ̄max⟨g, u⟩+ ⟨h, v⟩,

where g ∈ Rn and h ∈ Rd are standard Gaussian random vectors with i.i.d. N (0, 1) entries,
and mutually independent. By construction,

E[(Yθ − Yθ̃)
2] = σ̄2

max∥u− ũ∥22 + ∥v − ṽ∥22.

Applying the Sudakov–Fernique bound (Lemma 3), we obtain:

E[σmax(X)] ≤ E

[
sup

(u,v)∈T
Yu,v

]

= σ̄maxE
[

sup
u∈Sn−1

⟨g, u⟩
]
+ E

[
sup

v∈Sd−1(Σ−1)

⟨h, v⟩

]
= σ̄maxE[∥g∥2] + E[∥

√
Σh∥2].

By Jensen’s inequality,

E[∥g∥2] ≤
√
n, E[∥

√
Σh∥2] ≤

√
E[hTΣh] =

√
tr(Σ).

This proves inequality (1) of the theorem.
It remains to prove the lower bound (2) on the minimal singular value. It is based on a

similar argument, but requires somewhat more technical work, so we’ll make the simplifying
assumption that Σ = Id.

Again with Lemma 2,

P
[
σmin(X) ≤ E[σmin(X)] +

√
nδ
]
≤ e−nδ

2/2.

So it suffices to show that
E[σmin(X)] ≥

√
n−

√
d.

For n ≥ d, we use the variational representation:

σmin(X) = min
v∈Sd−1

max
u∈Sn−1

⟨u,Xv⟩.

We’ll need the following Gaussian process inequality which is a sort of generalization of
Sudakov-Fernique

Proposition 5 (Gordon’s inequality). . Let (Zs,t)s∈S,t∈T and (Ys,t)s∈S,t∈T be two Gaussian
processes with E[Zs,t] = E[Ys,t], satisfying:

E[(Zs,t1 − Zs,t2)
2] ≥ E[(Ys,t1 − Ys,t2)

2], ∀t1, t2 ∈ T, s ∈ S,

E[(Zs1,t − Zs2,t)
2] ≤ E[(Ys1,t − Ys2,t)

2], ∀s1 ̸= s2, t ∈ T.

Then,

E
[

max
s∈S,t∈T

Zs,t

]
≤ E

[
max

s∈S,t∈T
Ys,t

]
.

Taking Yu,v = ⟨g, u⟩+ ⟨h, v⟩ where g and h are iid Gaussian random vectors, we check that
Zu,v and Yu,v satisfy the conditions of the theorem. Then,
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−E[σmin(X)] = E
[
max
v∈Sd−1

−∥Xv∥2
]

= E
[
max
v∈Sd−1

min
u∈Sn−1

⟨u,−Xv⟩
]

≤ E
[
max
v∈Sd−1

min
u∈Sn−1

(⟨g, u⟩+ ⟨h, v⟩)
]

= E
[
max
v∈Sd−1

⟨h, v⟩
]
+ E

[
min

u∈Sn−1
⟨g, u⟩

]
= E[∥h∥2]− E[∥g∥2] ≈

√
d−

√
n.

(by properties of chi-squared distributions)
Thus,

E[σmin(X)] ≥
√
n−

√
d.

4 Large n,d regime

Goal: To study the asymptotic distribution of eigenvalues of the sample covariance matrix.
To rigorously define the convergence of eigenvalues, we introduce the following concept:

Definition 2 (Empirical Spectral Distribution (ESD)). For a matrix A ∈ Md(C), the empirical
spectral distribution (ESD) is defined as the probability measure:

µ̂(A) :=
1

d

∑
λ∈Sp(A)

δλ,

where Sp(A) denotes the spectrum of A, and δλ is the Dirac delta function at λ. This corresponds
to selecting an eigenvalue uniformly at random from the spectrum of A.

To characterize the convergence of a sequence of probability measures, we employ a common
technique in random matrix theory: studying the convergence of their Stieltjes transforms.

Definition 3 (Stieltjes Transform). For a probability measure µ, the Stieltjes transform is de-
fined as:

mµ(z) =

∫
1

t− z
dµ(t), for z such that Im(z) > 0.

The utility of the Stieltjes transform is demonstrated by the following result:

Lemma 4. Let µn be a sequence of probability measures and µ a probability measure. If

∀z, Im(z) > 0, mµn(z) −−−−−→
n→+∞

mµ(z),

then the sequence µn converges weakly to µ:

µn
W−−−−−→

n→+∞
µ.

The Stieltjes transform of the empirical spectral distribution (ESD) of a matrix A, having
real eigenvalues, has a closed-form expression. Let

µn =
1

d

d∑
i=1

δλi(A),
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where λi(A) are the eigenvalues of A. For all z with Im(z) > 0 (in particular not real), the
Stieltjes transform of µn is given by:

mµn(z) =
1

d

d∑
i=1

1

λi(A)− z
=

1

d
Tr
(
(A− zId)

−1
)
.

Definition 4 (Resolvent). Let A be a square matrix of size n × n. The resolvent RA of the
matrix A is defined on C \ Sp(A) by:

QA(z) = (A− zI)−1.

It shall be denoted Q or (Qn) when it is non-ambiguous.

Returning to our problem, consider (xi) ∼ N (0,Σ) i.i.d., where Σ ∈ Rd×d is a positive
definite matrix. Define

X =

x
T
1
...
xTn

 ∈ Rn×d, and Σ̂ =
1

n
XTX.

We aim to study the convergence of the eigenvalue distribution of the sample covariance
matrix Σ̂. To achieve this, we analyze its Stieltjes transform:

mµn(z) =
1

d
Tr(Q(z)),

where Q(z) = (Σ̂− zId)
−1 is the resolvent of the sample covariance matrix Σ̂.

Assumption 1 (Large n,d regime). As n −→ ∞, we have d
n −→ r ∈ (0,∞).

In the classical regime, where d is fixed, the law of large numbers implies:

Q(z) =

(
1

n
XXT − zId

)−1
a.s.−−−−−→

n→+∞
(Σ− zId)

−1.

This is unfortunately not true anymore when d also tends to infinity. As an example for that
when Σ = Id, we have the Marchenko-Pastur Law ...

Let’s find the ...
Suppose, it exists Q(z) ∈ Cd×d, such that 1

d(Qn(z)−Q(z)) → 0.
Step 1: concentration of Tr(Qn(z))

We can write X = W
√
Σ, where W ∈ Rn×d has i.i.d. N (0, 1) entries. Now let’s consider the

mapping S : W → Tr(( 1n
√
ΣW TW

√
Σ− zId)

−1) as a real-valued function on Rnd and let’s show
that it is Lipchitz. Let B(W ) = ( 1n

√
ΣW TW

√
Σ− zId)

dS(W )[H] = dTr(B(W )−1) ◦ d.−1(B(W ))[H]

= Tr(d.−1(B(W )) ◦ dB(.)(W )[H])

= Tr(−B(W )−1dB(.)(W )[H]B(W )−1)

= Tr(−dB(.)(W )[H]B(W )−2)

= Tr

(
− 1

n
(HT

√
ΣW +W T

√
ΣH)B(W )−2

)
=

〈
−2

n

√
ΣWB(W )−2, H

〉
F

9



Thus :
∇WS(W ) =

−2

n

√
ΣWB(W )−2.

∥∇WS(W )∥2F = ∥−2

n

√
ΣWB(W )−2∥2F

= ∥−2

n
UΛV T (

1

n
V ΛUTUΛV T − zId)

−2∥2F

= ∥−2

n
Λ(

1

n
Λ2 − zId)

−2∥2F , U and V are orthogonal matrices

=
4

n2

d∑
i=1

∣∣∣∣∣ σi(X)(
1
nσi(X)2 − Re(z) + i Im(z)

)2
∣∣∣∣∣
2

=
4

n2

d∑
i=1

σi(X)2(
1
nσi(X)2 − Re(z)

)2
+ Im(z)2

let g(x) = x
( x
n
−a)2+b2 , g(0) = 0 and limx→+∞ g(x) = 0.

g′(x) = 0 ⇐⇒ −x2

n2
+ a2 + b2 = 0

.
Thus :

∥∇WS(W )∥2F ≤ 4d

n2

n|z|
(|z| − Re)2 + Im(z)2

=
2d

n(|z| − Re(z))

According to the lemma 2 (Lipschitz functions Gaussian concentration inequality), we have

∀t ≥ 0,P(|Qn − EQn| ≥ t) ≤ 2exp(− t2n(|z| − Re(z))

4d
)

Step 2: Controlling Tr(Q̄− E(Qn)) :

The difference between two resolvent matrices has a nice form :

Q̄−Qn = Q̄−Qn(Σ
′ − zId)Q̄ = Qn(Σ̂− zId − Σ+ zId)Q̄ = Qn(Σ̂− Σ′)Q̄

. Thus

Q̄− EQn = E(Qn(Σ̂− Σ′)Q̄) =
1

n

n∑
i=1

E(Qn(xix
T
i − Σ′)Q̄). (1)

5 Eigenvectors estimation

In many high-dimensional problems, one is interested not only in the eigenvalues but also in
the directions (eigenvectors) associated with the leading eigenvalues. For example, in principal
component analysis (PCA), accurate estimation of the principal components is key. However,
noise and finite-sample effects lead to perturbations in the eigenvectors.

5.1 Resolvent and Eigenvectors

Lemma 5. If A ∈ Rd×d is a symmetric matrix, then the resolvent of A is given by

QA(z) =

d∑
j=1

uju
⊤
j

λj(A)− z
,

where λj(A) are the eigenvalues of A and uj are the corresponding eigenvectors.
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Proposition 6. If A ∈ Rd×d is a symmetric matrix, whose eigenvalues are denoted as λ1 ≥
λ2 ≥ . . . ≥ λd, then the projector onto the eigenspace associated with λi is given by:

Pλi =
1

2πi

∮
Γi

QA(η) dη,

where Γi is a closed contour surrounding λi, but not other eigenvalues λj such that λi ̸= λj.

Proof. The result follows by applying Cauchy’s theorem to the resolvent formula obtained in
Lemma 5.

Lemma 6. Let Σ,Σn ∈ Rd×d be two real symmetric matrices, whose eigenvalues are denoted
respectively as λ1 ≥ λ2 ≥ . . . ≥ λd and λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂d. Let {λi}ri=s be the eigenvalues of Σ
whose corresponding eigenvectors span the eigenspace associated with the eigenvalue λj. Define
λ0 = ∞ and λd+1 = −∞. If

∥Σ− Σn∥ <
min(λr − λr+1, λs−1 − λs)

2
,

then, defining gλj = min(λr − λr+1, λs−1 − λs), we have:

λi /∈ D(λj ,
gλj
2

) for all i /∈ {s, . . . , r},

λ̂i ∈ D(λj ,
gλj
2

) for all i ∈ {s, . . . , r},

λ̂i /∈ D(λj ,
gλj
2

) for all i /∈ {s, . . . , r},

where D(λj ,
gλj
2 ) denotes the open disk of radius

gλj
2 centered at λj.

Proof. Let gλj = min(λr − λr+1, λs−1 − λs) and assume the lemma’s condition holds.
Since the eigenvalues are arranged in descending order, it is immediate that λi /∈ D(λj ,

gλj
2 )

for all i /∈ {s, . . . , r}. Using Weyl’s inequality (Proposition 4), we also get λ̂i ∈ D(λj ,
gλj
2 ) for

all i ∈ {s, . . . , r}.
Furthermore, by similar arguments, for any i /∈ {s, . . . , r}:

|λj − λ̂i| ≥ |λj − λi| − |λi − λ̂i| > r − r

2
=

r

2

which concludes the proof.

5.2 Perturbation Analysis and Eigenvalue Gaps

The accuracy of the eigenvector estimation depends critically on the spectral gap between clus-
ters of eigenvalues. More precisely, let Σ and its estimator Σn be symmetric matrices with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd and λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂d respectively.

We will proof a weaker result than the Davis Kahan Theorem :

Proof. In the following, we denote

gλj = min(λr − λr+1, λs−1 − λs),

and assume that ∥Σ− Σn∥ <
gλj
4 .

Fix z ∈ ∂D(λj ,
gλj
2 ), the circle of radius

gλj
2 centered at λj , and consider:

QΣ(z)−QΣn(z) = (zI − Σ)−1 − (zI − Σ− (Σn − Σ))−1.

11



Note that
|z − λi| ≥ ||λi − λj | − |λj − z|| =

∣∣∣|λi − λj | −
r

2

∣∣∣ ≥ gλj
2

.

Thus,

∥RΣ(z)∥ = max
i

1

|z − λi|
=

1

mini |z − λi|
≤ 2

gλj
.

Finally,

∥(Σn − Σ) ·QΣ(z)∥ ≤ ∥Σn − Σ∥ · ∥QΣ(z)∥ ≤
gλj
4

· 2

gλj
=

1

2
< 1.

Since (Md(R), ∥.∥) is a unital Banach algebra, we can write:

QΣn(z) = (zI − Σ− (Σn − Σ))−1 = QΣ(z) ·
∞∑
k=0

((Σn − Σ) ·QΣ(z))
k .

Thus, we obtain:

∥QΣ(z)−QΣn(z)∥ =

∥∥∥∥∥(zI − Σ)−1 ·
∞∑
k=1

(
(Σn − Σ)(zI − Σ)−1

)k∥∥∥∥∥
≤
∥∥(zI − Σ)−1

∥∥ · ∞∑
k=1

(
∥Σn − Σ∥ ·

∥∥(zI − Σ)−1
∥∥)k

≤
∥Σn − Σ∥ ·

∥∥(zI − Σ)−1
∥∥2

1− (∥Σn − Σ∥ · ∥(zI − Σ)−1∥)

≤ 8 · ∥Σn − Σ∥
g2λj

.

Using Proposition ?? and Lemma 6, it follows that:

∥∥∥Pλj (Σ)− P
λ̂j
(Σn)

∥∥∥ =
1

2π

∥∥∥∥∥
∮
∂D(λj ,

gλj
2

)
QΣ(z)−QΣn(z)dz

∥∥∥∥∥
≤ 1

2π

∮
∂D(λj ,

gλj
2

)
∥QΣ(z)−QΣn(z)∥ |dz|

≤ 1

2π

∮
∂D(λj ,

gλj
2

)

8 · ∥Σn − Σ∥
g2λj

|dz|

=
4 · ∥Σn − Σ∥

min(λr − λr+1, λs−1 − λs)
.
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