# Low-Rank Optimal Transport through Factor Relaxation with Latent Coupling

Peter Halmos, Xinhao Liu, Julian Gold, Benjamin Raphael

Yessin Moakher, Augustin Kheng, Nathan Boughalem-Salier



- 1. Problem formulation and state of the art
- 2. Low-Rank Optimal Transport with Latent Coupling
- **3**. Experimental Results



- 1. Problem forumulation and state of the art
- 2. Low-Rank Optimal Transport with Latent Coupling
- **3**. Experimental Results

## **Background : Discrete Optimal Transport**

#### **Primal problem formulation:**

$$egin{aligned} &\min \langle P,C 
angle \ P \geq 0 \ \end{bmatrix} \ s. ext{t.} & P \in \Pi_{a,.} \ P \in \Pi_{.,b} \end{aligned}$$

Where:

- P is the transport plan
- C is the cost matrix
- a and b are the marginal distributions



## **Scaling Optimal Transport**

#### Low rank factorisation:

Idea : Working in the space of matrices of rank <= r

Low rank factorisation



 $\Rightarrow$  **Problem**: Can't simply transfer the contraints to P on U and V.

## **Scaling Optimal Transport**

#### Low rank factorisation:

-[Altschuler'18] Propose : factorize the Kernel.

-[Scetborn ICML'21] Propose :  $P = Q diag(1/g) R^{T}$ Where :  $Q \in \Pi_{a,q}$  and  $R \in \Pi_{b,q}$  $P = Q \operatorname{diag}\left(\frac{1}{a_O}\right) T \operatorname{diag}\left(\frac{1}{a_B}\right) R^T$ -[Halmos Neurips'24] Propose :

where  $g_Q$  and  $g_R$  are the inner marginals of Q and  $R, Q \in \Pi_{a,\cdot}, R \in \Pi_{b,\cdot}, T \in \Pi_{g_O,g_R}.$ 

#### Low rank Optimal Transport

#### **Difference between the two methods**

(1) [Scetbon ICML'21]

$$P = Q diag(1/g) R^T \qquad \qquad P = Q$$

+Both optimize over the same space, but (2) has more parameters.+They use different optimization algorithms:

- (1) Mirror descent followed by Dykstra's algorithm
- (2) Coordinate mirror descent

The optimization literature includes results on the equivalence of Dykstra's algorithm and coordinate descent (e.g., [Tibshirani NIPS'17] for regularized regression). +Non convex problems, but we have stationary convergence (not necessarily to the minimum) thanks to [Ghadimi'13].

(2) [Halmos Neurips'24]

$$\operatorname{diag}\left(rac{1}{g_Q}
ight)T\operatorname{diag}\left(rac{1}{g_R}
ight)R^T$$



### 1. Problem forumulation and state of the art

2. Low-Rank Optimal Transport with Latent Coupling

3. Experimental Results

#### Low-Rank Optimal Transport with Latent Coupling [Halmos Neurips'24] Coordinate descent:

Recall our problem is : 
$$(\mathbf{Q}, \mathbf{R}, \mathbf{T}) \mathcal{L}_{\mathrm{LC}} = \langle \mathbf{Q} \operatorname{diag} \left( \frac{1}{g_Q} \right) \mathbf{T} \operatorname{diag} \left( \frac{1}{g_R} \right)$$
  
s.t.  $g_Q := \mathbf{Q}^T \mathbf{1}_n, \quad g_R := \mathbf{R}^T \mathbf{1}_n$   
 $\mathbf{Q} \in \Pi_{a,\cdot}, \quad \mathbf{R} \in \Pi_{b,\cdot}, \quad \mathbf{T} \in \Pi_{g_Q,g_R}, \mathbf{Q} \in \mathbb{R}_{n,r}^+, \quad \mathbf{R}$ 

- $\left( rac{1}{R} 
  ight) \mathbf{R}^T, \mathbf{M} 
  angle_F$
- $\mathbf{R}\in \mathbb{R}_{m,r}^+, \quad \mathbf{T}\in \mathbb{R}_{r,r}^+,$

### Low-Rank Optimal Transport with Latent Coupling [Halmos Neurips'24] Coordinate descent:

Recall our problem is :  

$$\begin{array}{c} \min_{(\mathbf{Q},\mathbf{R},\mathbf{T})} \mathcal{L}_{\mathrm{LC}} = \langle \mathbf{Q} \operatorname{diag} \left( \frac{1}{g_Q} \right) \mathbf{T} \operatorname{diag} \left( \frac{1}{g_Q} \right) \mathbf{T}$$

 $egin{aligned} & rac{1}{g_R} \end{pmatrix} \mathbf{R}^T, \mathbf{M} 
angle_F \ & \mathbf{R}^T \mathbf{1}_m, \ & \mathbf{R} \in \mathbb{R}^+_{m,r}, \quad \mathbf{T} \in \mathbb{R}^+_{r,r}, \end{aligned}$ 

- $(R,T_k)$
- **[**]

### Low-Rank Optimal Transport with Latent Coupling [Halmos Neurips'24] **Coordinate descent:**

Recall our problem is :  

$$\begin{array}{c} \min_{(\mathbf{Q},\mathbf{R},\mathbf{T})} \mathcal{L}_{\mathrm{LC}} = \langle \mathbf{Q} \operatorname{diag} \left(\frac{1}{g_Q}\right) \mathbf{T} \operatorname{diag} \left(\frac{1}{g_R}\right) \mathbf{R}^T, \mathbf{M} \rangle_F \\
\text{s.t.} \quad g_Q := \mathbf{Q}^T \mathbf{1}_n, \quad g_R := \mathbf{R}^T \mathbf{1}_m, \\
\mathbf{Q} \in \Pi_{a,\cdot}, \quad \mathbf{R} \in \Pi_{b,\cdot}, \quad \mathbf{T} \in \Pi_{g_Q,g_R}, \mathbf{Q} \in \mathbb{R}^+_{n,r}, \quad \mathbf{R} \in \mathbb{R}^+_{m,r}, \quad \mathbf{T} \in \mathbb{R}^+_{r,r}, \\
\begin{array}{c} \mathbf{Coordinate} \\
\mathbf{descent} \\
\end{array}$$

$$\begin{array}{c} \mathbf{Q}_{k+1}, R_{k+1} \rangle \leftarrow \underset{\mathbf{Q} \in \Pi_{a,\cdot}, \mathbf{R} \in \Pi_{b,\cdot}, \mathbf{Q} \geq 0, \mathbf{R} \geq 0}{\operatorname{arg\,min}} \mathcal{L}_{\mathrm{LC}}(Q, R, T_k) \\
\end{array}$$

$$\begin{array}{c} \mathbf{Optimize\ with\ one mirror\ descend } \\
\mathbf{P}_{k+1} \leftarrow \underset{\mathbf{T} \in \Pi_{g_{Q_{k+1}}, g_{R_{k+1}}, \mathbf{T} \geq 0}{\operatorname{arg\,min}} \mathcal{L}_{\mathrm{LC}}(Q_{k+1}, R_{k+1}, T) \\
\end{array}$$



# Low-Rank Optimal Transport with Latent Coupling [Halmos Neurips'24]

**Coordinate Mirror descent:** 

$$(Q_{k+1},R_{k+1}) \leftarrow rgmin_{\mathbf{Q}\in \Pi_{a,\cdot},\mathbf{R}\in \Pi_{b,\cdot},\mathbf{Q}\geq 0,\mathbf{R}\geq 0} \mathcal{L}_{\mathrm{LC}}(Q,R)$$

$$ig> (Q_{k+1},R_{k+1}) \leftarrow rg\min_{\mathbf{Q}\in \Pi_{a,\cdot},\mathbf{R}\in \Pi_{b,\cdot}} ig\langle (Q,R), 
abla_{Q,R}\mathcal{L}_{\mathrm{LC}} ig
angle + rac{1}{2}$$

 $(R,T_k)$ 

 $rac{1}{\gamma_k} \mathrm{KL}((Q,R) \parallel (Q_k,R_k)).$ 

#### Low-Rank Optimal Transport with Latent Coupling [Halmos Neurips'24] Coordinate Mirror descent:

$$igstarrow (Q_{k+1},R_{k+1}) \leftarrow rg\min_{\mathbf{Q}\in \Pi_{a,\cdot},\mathbf{R}\in \Pi_{b,\cdot}}ig\langle (Q,R),
abla_{Q,R}\mathcal{L}_{\mathrm{LC}} 
angle + rac{1}{\gamma_k}\mathbf{R}_{\mathrm{LC}}$$

$$egin{aligned} \displaystyle igoplus & \left\{ egin{aligned} Q_{k+1} \leftarrow rg\min_{\mathbf{Q}\in \Pi_{a,\cdot}} \left\langle Q, 
abla_Q \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(Q) \ & R_{k+1} \leftarrow rg\min_{\mathbf{R}\in \Pi_{b,\cdot}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(R) \end{aligned} 
ight.$$

$$\blacktriangleright \ T_{k+1} \leftarrow \arg\min_{T \in \Pi_{g_{Q_{k+1}},g_{R_{k+1}}}} \left\langle T, \nabla_T \mathcal{L}_{\mathrm{LC}} \right\rangle + \frac{1}{\gamma_k} \mathrm{KL}(T \parallel T_k).$$

 $\mathrm{KL}((Q,R)\parallel (Q_k,R_k)).$ 

- $\parallel Q_k).$
- $\parallel R_k).$

#### Low-Rank Optimal Transport with Latent Coupling [Halmos Neurips'24] **Coordinate Mirror descent:**

$$igstarrow (Q_{k+1},R_{k+1}) \leftarrow rg\min_{\mathbf{Q}\in \Pi_{a,\cdot},\mathbf{R}\in \Pi_{b,\cdot}}ig\langle (Q,R),
abla_{Q,R}\mathcal{L}_{\mathrm{LC}} 
angle + rac{1}{\gamma_k}\mathbf{R}$$

$$egin{aligned} egin{aligned} & \displaystyle igoplus & \displaystyle \left\{ egin{aligned} Q_{k+1} \leftarrow rg\min_{\mathbf{Q}\in\Pi_{a,\cdot}} \left\langle Q, 
abla_Q \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(Q) \ & \displaystyle R_{k+1} \leftarrow rg\min_{\mathbf{R}\in\Pi_{b,\cdot}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}((R)) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{LC}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{L}} 
ight
angle + rac{1}{\gamma_k} \mathrm{KL}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{L}} 
ight
angle + rac{1}{\gamma_k} \mathrm{K}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{L}} \\Gamma_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{L}} \right\rangle + rac{1}{\gamma_k} \operatorname{A}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{arg\min_{\mathbf{R}\in\Pi_{b,\cdot}} \left\langle R, 
abla_R \mathcal{L}_{\mathrm{L}} \right\rangle + rac{1}{\gamma_k} \operatorname{A}(R) \ & \displaystyle R_{k+1} \leftarrow \operatorname{A}(R) \$$

$$\blacktriangleright \ T_{k+1} \gets \arg\min_{T \in \Pi_{g_{Q_{k+1}},g_{R_{k+1}}}} \left\langle T, \nabla_T \mathcal{L}_{\mathrm{LC}} \right\rangle + \frac{1}{\gamma_k} \mathrm{KL}(T \parallel T_k).$$

Optimal Transport problems that we can solve using Sinkhorn algorithm.

 $-\mathrm{KL}((Q,R)\parallel (Q_k,R_k)).$ 

 $\parallel Q_k).$ 

 $\parallel R_k).$ 



- 1. Problem forumulation and state of the art
- 2. Low-Rank Optimal Transport with Latent Coupling
- 3. Experimental Results

## **Benchmarking the Scaling**



\*We verified that the two methods have the same linear loss and respect the marginals \*Low-rank with latent coupling : tau=10,gamma=10,epsilon=1e-9,max\_iter=3000 \*Sinkhorn : reg=10

\*Low-Rank Sinkhorn Factorization : gamma\_0=10

## Visualizing the projection

(1) [Scetbon ICML'21]

$$P = Q diag(1/g) R^T$$



$$P = Q \operatorname{diag}\left(rac{1}{g_Q}
ight) T \operatorname{diag}\left(rac{1}{g_R}
ight) R^T$$

(2) [Halmos Neurips'24]

## Visualizing the projection

(1) [Scetbon ICML'21]

$$P = Q diag(1/g) R^T$$
  $P = Q diag$ 



(2) [Halmos Neurips'24]

$$\left(rac{1}{g_Q}
ight)T\,{
m diag}\,\left(rac{1}{g_R}
ight)R^T$$

 $egin{aligned} Y^a &= ext{diag}(1/g_Q)Q^TZ^a \ Y^b &= ext{diag}(1/g_R)R^TZ^b \end{aligned}$ 

## Visualizing the projection



5 source points, 10 target points

#### 8 source points, 16 target points

## **Visualizing the projection: 5-10 points**



LOT (Scetbon 2021)

## Visualizing the projection: 5-10 points



LOT (Scetbon 2021)

#### FRLC (Halmos 2024)

## **Visualizing the projection: 8-16 points**



LOT (Scetbon 2021)

## **Visualizing the projection: 8-16 points**



LOT (Scetbon 2021)

#### FRLC (Halmos 2024)

### Visualizing the projection: non square T

T is not necessarely square !

 $egin{aligned} \min_{egin{aligned} (\mathbf{Q},\mathbf{R},\mathbf{T}) \end{array}} \mathcal{L}_{ ext{LC}} &= \langle \mathbf{Q} \operatorname{diag} \left(rac{1}{g_Q}
ight), \ & ext{s.t.} \quad g_Q := \mathbf{Q}^T \mathbf{1}_n, \ & extbf{Q} \in \Pi_{a,\cdot}, \quad \mathbf{R} \in \Pi_{b,\cdot}, \quad \mathbf{T} \in \Pi_{g_Q,g_R}, \mathbf{Q} \in \ \end{aligned}$ 

12/15

$$egin{aligned} &\mathbf{T} \operatorname{diag} \left( rac{1}{g_R} 
ight) \mathbf{R}^T, \mathbf{M} 
angle_F \ &g_R := \mathbf{R}^T \mathbf{1}_m, \ &\in \mathbb{R}^+_{n,r_1}, \ \ \mathbf{R} \in \mathbb{R}^+_{m,r_2}, \ \ \mathbf{T} \in \mathbb{R}^+_{r_1,r_2}, \end{aligned}$$

### Visualizing the projection: non square T

Target points (b)

Latent coupling points (a)

FRLC (Halmos 2024)

T is not necessarely square !

 $\min_{(\mathbf{Q},\mathbf{R},\mathbf{T})} \mathcal{L}_{ ext{LC}} = \langle \mathbf{Q} \operatorname{diag} \left( rac{1}{g_Q} 
ight) \mathbf{T} \operatorname{diag} \left( rac{1}{g_R} 
ight) \mathbf{R}^T, \mathbf{M} 
angle_F$ s.t.  $g_Q := \mathbf{Q}^T \mathbf{1}_n, \quad g_R := \mathbf{R}^T \mathbf{1}_m,$ 

Recall, with T square :







## **Benchmark : real datasets**

-Single-cell RNA sequencing captures cell encoded as vectors at different time points, but due to its destructive nature, the progression of individual cells over time cannot be tracked.
-For a pair of time points (ti, tj), the problem is determining which descendants of cell x at time ti give rise to at time tj.

 $\implies$  [Schiebinger'19] proposes unbalanced optimal transport problem.

## **Benchmark : real datasets**

-Single-cell RNA sequencing captures cell encoded as vectors at different time points, but due to its destructive nature, the progression of individual cells over time cannot be tracked.

-For a pair of time points (ti, tj), the problem is determining which descendants of cell x at time ti give rise to at time tj.

[Schiebinger'19] proposes unbalanced optimal transport problem.

| Method               | $\langle P, C \rangle$ | $  P1_m - a  _2$ | $\ P^T 1_n - b\ _2$    | Time |
|----------------------|------------------------|------------------|------------------------|------|
| Sinkhorn(POT)        | 0.406                  | 0.0001           | $6.37 \times 10^{-15}$ | 0.8s |
| Sinkhorn(Ott)        | 0.24                   | 0.1626           | $9.13 	imes 10^{-8}$   | 2.1s |
| LOT(Ott)[r=5]        | 0.406                  | 0.0003           | $6.9 	imes 10^{-9}$    | 40s  |
| LOT(Ott)[r=10]       | 0.406                  | 0.0003           | $5.97 	imes 10^{-9}$   | 1m   |
| FRLC(original)[r=5]  | 0.3834                 | 0.001            | 0.0009                 | 4.5s |
| FRLC(original)[r=10] | 0.3731                 | 0.0012           | 0.0012                 | 4.5s |

Table 1: Comparison of methods on single-cell trajectory inference problem.

\*Here we have n=4556 m=3449, we did PCA(30) as preprocessing as done in the original paper. \*epsilon = 5, reg\_a = 1 (equivalent to tau\_a = 1/(1+epsilon) in ott)



### **Benchmark : real datasets**

If the problem where balanced:

| Method                                        | $\langle P, C \rangle$ | $  P1_m - a  _2$        | $\ P^T 1_n - b\ _2$     | Time            |
|-----------------------------------------------|------------------------|-------------------------|-------------------------|-----------------|
| EMD2                                          | 0.3309                 | $1.1 \times 10^{-16}$   | $9 \times 10^{-18}$     | 2s              |
| $\operatorname{Sinkhorn}(\operatorname{POT})$ | 0.4067                 | $5.132 \times 10^{-15}$ | $5.874 \times 10^{-15}$ | $0.9\mathrm{s}$ |
| $\operatorname{Sinkhorn}(\operatorname{Ott})$ | 0.3491                 | $3.92 \times 10^{-8}$   | $1.39 \times 10^{-5}$   | $2.5\mathrm{s}$ |
| LOT(Ott)[r=5]                                 | 0.4068                 | $6.96 \times 10^{-9}$   | $6.52 \times 10^{-9}$   | $0.7\mathrm{s}$ |
| LOT(Ott)[r=50]                                | 0.4068                 | $7.08 	imes 10^{-9}$    | $6.37 	imes 10^{-9}$    | 22.3s           |
| FRLC(original)[r=5]                           | 0.3822                 | 0.0009                  | 0.0008                  | $4.5\mathrm{s}$ |
| FRLC(original)[r=50]                          | 0.3581                 | 0.001                   | 0.001                   | $5.8\mathrm{s}$ |
| FRLC(our code)[r=5]                           | 0.4068                 | $8.96 \times 10^{-7}$   | $1 \times 10^{-6}$      | 0.2s            |
| FRLC(our code)[r=50]                          | 0.4067                 | $2 \times 10^{-6}$      | $2.24\times10^{-6}$     | 0.4s            |

Table 2: Comparison of methods on single-cell trajectory inference balanced problem.

\*epsilon = 10



High sensitivity to hyperparmeters :

- number of iterations required for a satisfactory solution highly dependent on the dataset,
- may fall outside the feasibility domain quickly if step size and inner marginals regularization not tuned.

### Conclusion

- Effective complexity compared to other methods,
- Validation of the method over artificial and real datasets,
- Capturing data structure by identify latent coupling points,
- Hyperparameter Sensitivity is the major drawback.

#### References

- Halmos, P., Liu, X., Gold, J., & Raphael, B. J. (2024). Low-Rank Optimal Transport through Factor Relaxation with Latent Coupling. In Advances in Neural Information Processing Systems 38 (NeurIPS 2024).
- Scetbon, M., Cuturi, M., & Peyré, G. (2021). Low-Rank Sinkhorn Factorization. In Proceedings of the 38th International Conference on Machine Learning (ICML 2021).
- Scetbon, M., Klein, M., Palla, G., & Cuturi, M. (2023). Unbalanced Low-Rank Optimal Transport Solvers. In Advances in Neural Information Processing Systems 37 (NeurIPS 2023).
- Altschuler, J., Bach, F., Rudi, A., and Niles-Weed, J. Massively scalable sinkhorn distances via the nyström method, 2018.
- Tibshirani, R. J. (2017). Dykstra's Algorithm, ADMM, and Coordinate Descent: Connections, Insights, and Extensions. In Advances in Neural Information Processing Systems 31 (NeurIPS 2017).
- Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subramanian, V., Solomon, A., Gould, J., Liu, S., Lin, S., Berube, P., Lee, L., Chen, J., Brumbaugh, J., Rigollet, P., Hochedlinger, K., Jaenisch, R., Regev, A., & Lander, E. S. (2019). Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming.
- Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Boisbunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N. T. H., Janati, H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A., Seguy, V., Sutherland, D. J., Tavenard, R., Tong, A., & Vayer, T. (2021). POT: Python Optimal Transport.
- Cuturi, M., Meng-Papaxanthos, L., Tian, Y., Bunne, C., Davis, G., & Teboul, O. (2022). Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein.
- Forrow, A., Hütter, J.-C., Nitzan, M., Rigollet, P., Schiebinger, G., & Weed, J. (Year). Statistical Optimal Transport via Factored Couplings. MIT, Harvard University, Broad Institute.