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Background : Discrete Optimal Transport
Primal problem  formulation:

Where :
P is the transport plan
C is the cost matrix
a and b are the marginal distributions
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Scaling Optimal Transport 
Low rank factorisation:

n

m r

r
Low rank factorisation

Problem: Can’t simply transfer the contraints to P on U and V.

Idea : Working in the space of
matrices of rank <= r
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-[Scetborn ICML’21] Propose : 

Scaling Optimal Transport 
Low rank factorisation:

-[Altschuler’18] Propose : factorize the Kernel. 

-[Halmos Neurips’24] Propose : 
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Low rank Optimal Transport

Difference between the two methods

+Both optimize over the same space, but (2) has more parameters.
+They use different optimization algorithms:

(1) Mirror descent followed by Dykstra’s algorithm
(2) Coordinate mirror descent

The optimization literature includes results on the equivalence of Dykstra’s algorithm and
coordinate descent (e.g., [Tibshirani NIPS’17] for regularized regression).
+Non convex problems, but we have stationary convergence (not necessarily to the
minimum) thanks to [Ghadimi’13].

(1) [Scetbon ICML’21] (2) [Halmos Neurips’24]
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Low-Rank Optimal Transport with Latent Coupling [Halmos Neurips’24]
Coordinate descent: 

Recall our problem is :
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Low-Rank Optimal Transport with Latent Coupling [Halmos Neurips’24]
Coordinate descent: 

Recall our problem is :

Coordinate
descent
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Low-Rank Optimal Transport with Latent Coupling [Halmos Neurips’24]
Coordinate descent: 

Optimize with one step of
mirror descent

Recall our problem is :

Coordinate
descent
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Low-Rank Optimal Transport with Latent Coupling [Halmos Neurips’24]
Coordinate Mirror descent: 
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Low-Rank Optimal Transport with Latent Coupling [Halmos Neurips’24]
Coordinate Mirror descent: 
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Low-Rank Optimal Transport with Latent Coupling [Halmos Neurips’24]
Coordinate Mirror descent: 

Optimal Transport problems that we can solve using Sinkhorn algorithm.
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Benchmarking the Scaling

*We verified that the two methods have the same linear loss and respect the marginals
*Low-rank with latent coupling : tau=10,gamma=10,epsilon=1e-9,max_iter=3000
*Sinkhorn : reg=10
*Low-Rank Sinkhorn Factorization :  gamma_0=10
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Visualizing the projection
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(1) [Scetbon ICML’21] (2) [Halmos Neurips’24]



Visualizing the projection
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(1) [Scetbon ICML’21] (2) [Halmos Neurips’24]



Visualizing the projection

8 source points, 16 target points5 source points, 10 target points
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Visualizing the projection: 5-10 points

LOT (Scetbon 2021)
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Visualizing the projection: 5-10 points

FRLC (Halmos 2024)LOT (Scetbon 2021)
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Visualizing the projection: 8-16 points

LOT (Scetbon 2021)
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Visualizing the projection: 8-16 points

FRLC (Halmos 2024)LOT (Scetbon 2021)
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T is not necessarely square !

Visualizing the projection: non square T
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T is not necessarely square !

FRLC (Halmos 2024)LOT (Scetbon 2021)

FRLC (Halmos 2024)

Recall, with T square : 

Visualizing the projection: non square T
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Benchmark : real datasets
-Single-cell RNA sequencing captures cell encoded as vectors at different time points, but due to its destructive nature,

the progression of individual cells over time cannot be tracked.
-For a pair of time points (ti, tj), the problem is determining which descendants of cell x at time ti give rise to at time tj. 

[Schiebinger’19] proposes unbalanced optimal transport problem.
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Benchmark : real datasets
-Single-cell RNA sequencing captures cell encoded as vectors at different time points, but due to its destructive nature,

the progression of individual cells over time cannot be tracked.
-For a pair of time points (ti, tj), the problem is determining which descendants of cell x at time ti give rise to at time tj. 

[Schiebinger’19] proposes unbalanced optimal transport problem.

*Here we have n=4556  m=3449, we did PCA(30) as preprocessing as done in the original paper.
*epsilon = 5,  reg_a = 1 (equivalent to tau_a = 1/(1+epsilon) in ott)
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Benchmark : real datasets

If the problem where balanced: 

*epsilon = 10
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Limits

High sensitivity to hyperparmeters :

number of iterations required for a satisfactory solution highly dependent
on the dataset, 

may fall outside the feasibility domain quickly if step size and inner
marginals regularization not tuned.

15/15



Conclusion

Effective complexity compared to other methods, 

Validation of the method over artificial and real datasets, 

Capturing data structure by identifing latent coupling points, 

Hyperparameter Sensitivity is the major drawback. 
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